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Constructing and Sampling Graphs with a Prescribed Joint Degree
Distribution

ISABELLE STANTON, University of California, Berkeley
ALI PINAR, Sandia National Laboratories

One of the most influential recent results in network analysis is that many natural networks exhibit a
power-law or log-normal degree distribution. This has inspired numerous generative models that match
this property. However, more recent work has shown that while these generative models do have the right
degree distribution, they are not good models for real life networks due to their differences on other impor-
tant metrics like conductance. We believe this is, in part, because many of these real-world networks have
very different joint degree distributions, i.e. the probability that a randomly selected edge will be between
nodes of degree k and l. Assortativity is a sufficient statistic of the joint degree distribution, and it has been
previously noted that social networks tend to be assortative, while biological and technological networks
tend to be disassortative.

We suggest that the joint degree distribution of graphs is an interesting avenue of study for further re-
search into network structure. We provide a simple greedy algorithm for constructing simple graphs from a
given joint degree distribution, and a Monte Carlo Markov Chain method for sampling them. We also show
that the state space of simple graphs with a fixed degree distribution is connected via endpoint switches. We
empirically evaluate the mixing time of this Markov Chain by using experiments based on the autocorrela-
tion of each edge.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Graphs, joint degree distribution
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1. INTRODUCTION
Graphs are widely recognized as the standard modeling language for many complex
systems, including physical infrastructure (e.g., Internet, electric power, water, and
gas networks), scientific processes (e.g., chemical kinetics, protein interactions, and
regulatory networks in biology starting at the gene levels through ecological systems),
and relational networks (e.g., citation networks, hyperlinks on the web, and social
networks). The broader adoption of the graph models over the last decade, along with
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the growing importance of associated applications, calls for descriptive and generative
models for real networks. What is common among these networks? How do they differ
statistically? Can we quantify the differences among these networks? Answering these
questions requires understanding the topological properties of these graphs, which
have lead to numerous studies on many “real-world” networks from the Internet to
social, biological and technological networks [Faloutsos et al. 1999].

Perhaps the most prominent result coming out of these studies is the existence of
power-law or log-normal distributions over many quantities, including the degree dis-
tribution: the number of nodes of degree k is proportional to k−α, for some constant
α. The ubiquity of this distribution has been a motivator for many different genera-
tive models, like preferential attachment, the copying model, the Barabasi hierarchi-
cal model, forest-fire model, the Kronecker graph model and geometric preferential
attachment [Flaxman et al. 2004; Kumar et al. 2000; Leskovec et al. 2005; Ravasz
and Barabasi 2003; Leskovec et al. 2010]. Many of these models also match other ob-
served features, such as small diameter or densification [Kleinberg 2001]. However,
recent studies comparing the generative models with real networks on metrics like
conductance show that the models do not match other important features of the net-
works [Leskovec et al. 2008]. Further, there have been recent studies questioning the
power-law assumption, and suggesting principled methods for deciding whether or not
it is a good model for given data [Clauset et al. 2009].

The degree distribution alone does not define a graph. McKay’s estimate shows that
there may be exponentially many graphs with the same degree distribution. However,
models based on degree distribution are commonly used to compute statistically signif-
icant structures in a graph. For example, the modularity metric is a standard metric
to find communities in graphs [Newman 2006a; 2004]. This metric defines a null hy-
pothesis for the structure of a graph based on its degree distribution, namely that
probability of an edge between vertex vi and vj is proportional to didj , where di and
dj represent the degrees of vertices vi and vj . The modularity of a group of vertices is
defined by how much their structure deviates from the null hypothesis, and a higher
modularity signifies a better community. The key point here is that the null hypothesis
is solely based on its degree distribution and therefore might be incorrect. As a result,
better descriptive models are critically important.

One way to enhance the results based on degree distribution is to use a more restric-
tive feature such as the joint degree distribution. Intuitively, if degree distribution of
a graph describes the probability that a vertex selected uniformly at random will be
of degree k then its joint degree distribution describes the probability that a randomly
selected edge will be between nodes of degree k and l. Note that while the joint degree
distribution uniquely defines the degree distribution of a graph up to isolated nodes,
graphs with the same degree distribution may have very different joint degree distri-
butions. For example, the assortativity of a network measures whether nodes prefer
to attach to other similar or dissimilar nodes. When similarity is defined in terms of a
node’s degree, it is a sufficient statistic of the joint degree distribution and measures
how different the joint degree distribution is from one where all of the edges are be-
tween nodes of the same degree. Studies of the assortativity of networks show that
social networks tend to be assortative, while biological and technological networks like
the Internet tend to be dissortative [Newman 2002b; 2002a].

Before attempting to use the joint degree distribution as a potential feature for gen-
erative models, it is important to know how tractable it is to work with. The primary
questions investigated by this paper are: Given a joint degree distribution and an inte-
ger n, does the joint degree distribution correspond to a real graph? If so, can one con-
struct a graph of size n with that joint degree distribution? Is it possible to construct
or generate a uniformly random graph with that same joint degree distribution? We
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address these problems from both a theoretical and from an empirical perspective. In
particular, being able to uniformly sample graphs allows one to empirically evaluate
which other graph features, like diameter, or eigenvalues, are correlated with the joint
degree distribution.

Contributions. We make several contributions to this problem, both theoretically
and experimentally. First, we discuss the necessary and sufficient conditions for a
given joint degree vector to be graphical. We prove that these conditions are sufficient
by providing a new constructive algorithm. Next, we introduce a new configuration
model for the joint degree matrix problem which is a natural extension of the configu-
ration model for the degree sequence problem. Finally, using this configuration model,
we develop Markov Chains for sampling both pseudographs and simple graphs with a
fixed joint degree matrix. We prove the correctness of both chains and mixing time for
the pseudograph chain by using previous work. The mixing time of the simple graph
chain is experimentally evaluated using autocorrelation.

In practice, Monte Carlo Markov Chains are a very popular method for sampling
from difficult distributions. However, it is often very difficult to theoretically evaluate
the mixing time of the chain, and many practitioners simply stop the chain after 5,000,
10,000 or 20,000 iterations without much justification. Our experimental design with
autocorrelation provides a set of statistics that can be used as a justification for choos-
ing a stopping point. Further, we show one way that the autocorrelation technique can
be adapted from real-valued samples to combinatorial samples.

2. RELATED WORK
The related work can be roughly divided into two categories: constructing and sam-
pling graphs with a fixed degree distribution using sequential importance sampling or
Monte Carlo Markov Chain methods, and experimental work on heuristics for gener-
ating random graphs with a fixed joint degree distribution.

The methods for constructing graphs with a given degree distribution are primar-
ily either reductions to perfect matchings or sequential sampling methods. There are
two popular perfect matching methods. The first is the configuration model [Aiello
et al. 2000]: k mini-vertices are created for each degree k vertex, and all the mini-
vertices are connected. Any perfect matching in the configuration graph corresponds
to a graph with the correct degree distribution by merging all of the identified mini-
vertices. This allows multiple edges and self-loops, which are often undesirable. The
second approach, the gadget configuration model, prevents multi-edges and self-loops
by creating a gadget for each vertex. If vi has degree di, then it is replaced with a com-
plete bipartite graph (Ui, Vi) with |Ui| = n − 1 − di and |Vi| = n − 1. Exactly one node
in each Vi is connected to each other Vj , representing edge (i, j) [Kannan et al. 1999].
Any perfect matching in this model corresponds exactly to a simple graph by using the
edges in the matching that correspond with edges connecting any Vi to any Vj . These
models are pictured in Figures 1 and 2 respectively. We use a natural extension of the
first configuration model to the joint degree distribution problem.

There are also sequential sampling methods that will construct a graph with a given
degree distribution. Some of these are based on the necessary and sufficient Erdős-
Gallai conditions for a degree sequence to be graphical [Blitzstein and Diaconis 2006],
while others follow the method of Steger and Wormald [Bayati et al. 2007; Steger
and Wormald 1999; Sinclair and Jerrum 1989; Jerrum and Sinclair 1990; Kim and
Vu 2006]. These combine the construction and sampling parts of the problem and can
be quite fast. The current best work can sample graphs where dmax = O(m1/4−τ ) in
O(mdmax) time [Bayati et al. 2007].

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 3 of 24 Journal of Experimental Algorithmics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

A:4 I. Stanton et al.

a
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Fig. 1. On the left, we see an example of the configuration model of the degree distribution of the graph on
the right. The edges corresponding to that graph are bold. Each vertex is split into a number of mini-vertices
equal to its degree, and then all mini-vertices are connected. Not all edges are shown for clarity.

n− 1− d1

n− 1− d2 n− 1− dn

n− 1

Fig. 2. The gadget configuration model. A gadget is created for each vertex and there are 3 shown above.
One half of the gadget is n − 1 vertices, and the other half is n − 1 − di, where di is the degree. Then each
gadget is connected once to each other gadget. A perfect matching in this graph corresponds to a graph with
the correct degree sequence.

Another approach for sampling graphs with a given degree distribution is to use
a Monte Carlo Markov Chain method. There is significant work on sampling perfect
matchings [Jerrum et al. 2004; Broder 1986]. There has also been work specifically
targeted at the degree distribution problem. Kannan, Tetali and Vempala [Kannan
et al. 1999] analyze the mixing time of a Markov Chain that mixes on the configura-
tion model, and another for the gadget configuration model. Gkantsidis, Mihail and
Zegura [Gkantsidis et al. 2003] use a Markov Chain on the configuration model, but
reject any transition that creates a self-loop, multiple edge or disconnects the graph.
Both of these chains use the work of Taylor [Taylor 1982] to argue that the state space
is connected.

Amanatidis, Green and Mihail study the problem of when a joint degree matrix
has graphical representation and when a connected representation exists [Amanatidis
et al. 2008]. They give necessary and sufficient conditions for both of these problems,
and constructive algorithms. In Section 2, we give a simpler constructive algorithm
for creating a graphical representation that is based on solving the degree sequence
problem instead of alternating structures.

Another vein of related work is that of Mahadevan et al. who introduce the concept
of dK-series [Mahadevan et al. 2006; Mahadevan et al. 2007]. In this model, d refers
to the dimension of the distribution and 2K is the joint degree distribution. They pro-
pose a heuristic for generating random 2K-graphs for a fixed 2K distribution via edge
rewirings. However, their method can get stuck if there is only 1 node with any degree
k and the state space is not connected. We provide a theoretically sound method of
doing this.

Finally, Newman also studies the problem of fixing an assortativity value, find-
ing a joint remaining degree distribution with that value, and then sampling a ran-
dom graph with that distribution using Markov Chains [Newman 2002b; 2002a]. His
Markov Chain starts at any graph with the correct degree distribution and converges
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to a pseudograph with the correct joint remaining degree distribution. By contrast, our
work provides a theoretically sound way of constructing a simple graph with a given
joint degree distribution first, and our Markov Chain only has simple graphs with the
same joint degree distribution as its state space.

3. NOTATION AND DEFINITIONS
Formally, a degree distribution of a graph is the probability that a node chosen at
random will be of degree k. Similarly, the joint degree distribution is the probability
that a randomly selected edge will have endpoints of degree k and l. In this paper,
we are concerned with constructing graphs that exactly match these distributions, so
rather than probabilities, we will use a counting definition below and call it the joint
degree matrix. In particular, we will be concerned with generating simple graphs that
do not contain multiple edges or self-loops.

Definition 3.1. The degree vector (DV) d(G) of a graph G is a vector where d(G)k is
the number of nodes of degree k in G.

A generic degree vector will be denoted by D.

Definition 3.2. The joint degree matrix (JDM) J (G) of a graph G is a matrix where
J (G)k,l is exactly the number of edges between nodes of degree k and degree l in G.

A generic joint degree matrix will be denoted by J . Given a joint degree matrix, J ,
we can recover the number of edges in the graph as m =

∑∞
k=1

∑∞
l=k Jk,l. We can also

recover the degree vector as Dk = 1
k (Jk,k +

∑∞
l=1 Jk,l). The term Jk,k is added twice

because kDk is the number of endpoints of degree k and the edges in Jk,k contribute
two endpoints.

The number of nodes, n is then
∑∞
k=1Dk. This count does not include any degree

0 vertices, as these have no edges in the joint degree matrix. Given n and m, we can
easily get the degree distribution and joint degree distribution. They are P (k) = 1

nDk
while P (k, l) = 1

mJk,l. Note that P (k) is not quite the marginal of P (k, l) although it is
closely related.

The Joint Degree Matrix Configuration Model. We propose a new configuration
model for the joint degree distribution problem. Given J and its corresponding D we
create k mini-vertices for every vertex of degree k. In addition, for every edge with end-
points of degree k and l we create two mini-endpoints, one of class k and one of class l.
We connect all degree k mini-vertices to the class k mini-endpoints. This forms a com-
plete bipartite graph for each degree, and each of these forms a disconnected compo-
nent. We will call each of these components the “k-neighborhood”. Notice that there are
kDk mini-vertices of degree k, and kDk = Jk,k +

∑
l Jk,l corresponding mini-endpoints

in each k-neighborhood. This is pictured in Figure 3. Take any perfect matching in
this graph. If we merge each pair of mini-endpoints that correspond to the same edge,
we will have some pseudograph that has exactly the desired joint degree matrix. This
observation forms the basis of our sampling method.

4. CONSTRUCTING GRAPHS WITH A GIVEN JOINT DEGREE MATRIX
The Erdős-Gallai condition is a necessary and sufficient condition for a degree se-
quence to be realizable as a simple graph.

THEOREM 4.1. Erdős-Gallai A degree sequence d = {d1, d2, · · · dn} sorted in non-
increasing order is graphical if and only if for every k ≤ n,

∑k
i=1 di ≤ k(k − 1) +∑n

i=k+1 min(di, k).
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degree k minivertices

class k endpoints

class l endpoints

degree l minivertices

Fig. 3. The joint degree matrix configuration model. This shows just two degree neighborhoods of the joint
degree matrix configuration model. Each vertex of degree k is split into kmini-vertices which are represented
by the circles. These then form a complete bipartite component when they are connected with the class k
endpoints, the squares. Each degree neighborhood is completely disconnected from all others. Not all edges
are included for clarity.

The necessity of this condition comes from noting that in a set of vertices of size
k, there can be at most

(
k
2

)
internal edges, and for each vertex v not in the subset,

there can be at most min{d(v), k} edges entering. The condition considers each subset
of decreasing degree vertices and looks at the degree requirements of those nodes. If
the requirement is more than the available edges, the sequence can not be graphical.
The sufficiency is shown via the constructive Havel-Hakimi algorithm [Hakimi 1955;
1962].

The existence of the Erdős-Gallai condition inspires us to ask whether similar nec-
essary and sufficient conditions exist for a joint degree matrix to be graphical. The
following necessary and sufficient conditions are due to Amanatidis et al. [Amanatidis
et al. 2008].

THEOREM 4.2. Let J be given and D be the associated degree distribution. J can be
realized as a simple graph if and only if (1) Dk is integer-valued for all k and (2) ∀k, l,
if k 6= l then Jk,l ≤ DkDl. Otherwise, ∀k Jk,k ≤

(Dk

2

)
.

The necessity of these conditions is clear. The first condition requires that there are
an integer number of nodes of each degree value. The next two are that the number of
edges between nodes of degree k and l (or k and k) are not more than the total possible
number of k to l edges in a simple graph defined by the marginal degree sequences.
Amanatidis et al. show the sufficiency through a constructive algorithm. We will now
introduce a new algorithm that runs in O(m) time.

The algorithm proceeds by building a nearly regular graph for each class of edges,
Jk,l. Assume that k 6= l for simplicity. Each of the Dk nodes of degree k receives
bJk,l/Dkc edges, while Jk,l mod Dk each have an extra edge. Similarly, the l degree
nodes have bJk,l/Dlc edges, with Jk,l mod Dl having 1 extra. We can then construct a
simple bipartite graph with this degree sequence. This can be done in linear time in
the number of edges using queues as is discussed after Observation 4.3. If k = l, the
only differences are that the graph is no longer bipartite and there are 2Jk,k endpoints
to be distributed among Dk nodes. To find a simple nearly regular graph, one can use
the Havel-Hakimi [Hakimi 1962; 1955] algorithm in O(Jk,k) time.

We must show that there is a way to combine all of these nearly-regular graphs to-
gether without violating any degree constraints. Let d = 〈d1, d2, · · · dn〉 be the sorted
non-increasing order degree sequence from D. Let d̂v denote the residual degree se-
quence where the residual degree of a vertex v is dv minus the number of edges that
currently neighbor v. Also, let D̂k denote the number of nodes of degree k that have
non-zero residual degree, i.e. D̂k =

∑
dj=k

1(d̂j 6= 0).
To combine the nearly uniform subgraphs, we start with the largest degree nodes,

and the corresponding largest degree classes. It is not necessary to start with the

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 6 of 24Journal of Experimental Algorithmics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Constructing and Sampling Graphs with a Prescribed Joint Degree Distribution A:7

ALGORITHM 1: Greedy Graph Construction with a Fixed JDM
Input: J , n, m, D
Output: A graph G
for k = n · · · 1 and l = k · · · 1 do

if k 6= l then
Let a = Jk,l mod Dk and b = Jk,l mod Dl Let x1 · · ·xa = bJk,l

Dk
c+ 1,

xa+1 · · ·xDk = bJk,l

Dk
c and y1 · · · yb = b

Jk,l

Dl
c+ 1, yb+1 · · · yDl = b

Jk,l

Dl
c Construct a simple

bipartite graph B with degree sequence x1 · · ·xDk , y1 · · · yDl

end
else

Let c = 2Jk,k mod Dk Let x1 · · ·xc = b 2Jk,k

Dk
c+ 1 and xc+1 · · ·xDk = b 2Jk,k

Dk
c Construct a

simple graph B with the degree sequence x1 · · ·xDk

end
Place B into G by matching the nodes of degree k with higher residual degree with x1 · · ·xa

and those of degree l with higher residual degree with y1 · · · yb. The other vertices in B can
be matched in any way with those in G of degree k and l Update the residual degrees of
each k and l degree node.

end

largest, but it simplifies the proof. First, we note that after every iteration, the joint
degree sequence is still feasible if ∀k, l, k 6= l Ĵk,l ≤ D̂kD̂l and ∀k Ĵk,k ≤

(D̂k

2

)
.

We will prove that Algorithm 1 can always satisfy the feasibility conditions. First,
we note a fact.

OBSERVATION 1. For all k,
∑
l Ĵk,l + Ĵk,k =

∑
dj=k

d̂j

This follows directly from the fact that the left hand side is summing over all of the k
endpoints needed by Ĵ while the right hand side is summing up the available residual
endpoints from the degree distribution. Next, we note that if all residual degrees for
degree k nodes are either 0 or 1, then:

OBSERVATION 2. If, for all j such that dj = k, d̂j = 0 or 1 then
∑
dj=k

d̂j =∑
dj=k

1(d̂j 6= 0) = D̂k.

LEMMA 4.3. After every iteration, for every pair of vertices u, v of any degree k, |d̂u−
d̂v| ≤ 1.

Amanatidis et al. refer to Lemma 4.3 as the balanced degree invariant. This is most
easily proven by considering the vertices of degree k as a queue. If there are x edges
to be assigned, we can consider the process of deciding how many edges to assign each
vertex as being one of popping vertices from the top of the queue and reinserting them
at the end x times. Each vertex is assigned edges equal to the number of times it was
popped. The next time we assign edges with endpoints of degree k, we start with the
queue at the same position as where we ended previously. It is clear that no vertex can
be popped twice without all other vertices being popped at least once.

LEMMA 4.4. The above algorithm can always greedily produce a graph that satisfies
J , provided J satisfies the initial necessary conditions.

PROOF.
There is one key observation about this algorithm - it maximizes D̂kD̂l by ensuring

that the residual degrees of any two vertices of the same degree never differ by more
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than 1. By maximizing the number of available vertices, we can not get stuck adding a
self-loop or multiple edge. From this, we gather that if, for some degree k, there exists a
vertex j such that d̂j = 0, then for all vertices of degree k, their residuals must be either
0 or 1. This means that

∑
dj=k

d̂j = D̂k ≥ Ĵk,l for every other l from Observation 2.
From the initial conditions, we have that for every k, l Jk,l ≤ DkDl. Dk = D̂k provided

that all degree k vertices have non-zero residuals. Otherwise, for any unprocessed pair,
Jk,l ≤ min{D̂k, D̂l} ≤ D̂kD̂l. For the k, k case, it is clear that Jk,k ≤ D̂k ≤

(D̂k

2

)
. There-

fore, the residual joint degree matrix and degree sequence will always be feasible, and
the algorithm can always continue.

A natural question is that since the joint degree distribution contains all of the infor-
mation in the degree distribution, do the joint degree distribution necessary conditions
easily imply the Erdős-Gallai condition? We show that this is the case.

THEOREM 4.5. The necessary conditions for a joint degree matrix to be graphical
imply that the associated degree vector satisfies the Erdős-Gallai condition.

PROOF. Let J be given and D be the associated degree sequence. As with the Erdős-
Gallai condition, let d1 ≥ d2 ≥ · · · dn be the sorted degree sequence. We assume only
that Jk,l ≤ DkDl for k 6= l and Jk,k ≤

(Dk

2

)
. For clarity later, double each Jk,k entry so

that kDk =
∑
l Jk,l instead of kDk = Jk,k +

∑
l Jk,l.

We want to show that
∑k
i=1 di ≤ k(k− 1) +

∑n
i=k+1 min{k, di} for every k. For clarity,

we first present the argument when dk > dk+1. Also, let dk = l.

k∑
i=1

di =

n∑
x=l

n∑
y=1

Jx,y =

n∑
x=l

n∑
y=l

Jx,y +

n∑
x=l

l−1∑
y=1

Jx,y

First, we note that
∑n
x=l

∑n
y=l Jx,y ≤

∑n
x=l

∑n
y=lDxDy =

∑n
x=lDx

∑n
y=lDy ≤ k2.

However, we wanted to show it was less than k(k − 1). This is true because for k J
values, it’s true that Jx,x ≤ Dx(Dx − 1). Intuitively, the sum is including a self-loop for
every node but that self-loop can’t possibly exist.

Now, we consider
∑n
x=l

∑l−1
y=1 Jx,y. Here, let us fix y and note that it contributes∑n

x=l Jx,y. This is at most yDy on one hand, and also at most
∑n
x=lDyDx =

Dy
∑n
x=lDx ≤ Dyk on the other. Therefore,

∑n
x=l Jx,y ≤ min{yDy,Dyk} = Dy min{y, k}.

This is exactly the quantity we desired, so
∑n
x=l

∑l−1
y=1 Jx,y ≤

∑n
i=k+1 min{k, di}.

We now address the case where dk = dk+1. If we let l = dk again, then the above
argument changes because

∑k
i=1 dk =

∑n
x=l

∑n
y=1 Jx,y− (Dl−z)l where dk−z, · · · dk = l.

We note that the restricted graphical conditions here are that when we consider the
edges with at least one endpoint in {d1, · · · dk}, we have that Jx,l ≤ zDx (and z(z − 1)
where appropriate). Plugging this into the above argument results in exactly the right
values, as before.

5. UNIFORMLY SAMPLING GRAPHS WITH MONTE CARLO MARKOV CHAIN (MCMC)
METHODS

We now turn our attention to uniformly sampling graphs with a given graphical joint
degree matrix using MCMC methods. We return to the joint degree matrix configu-
ration model. We can obtain a starting configuration for any graphical joint degree
matrix by using Algorithm 1. The transitions we use select any endpoint uniformly
at random, then select any other endpoint in its degree neighborhood and swap the
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two edges that these neighbor. A more complex version of this chain checks that this
swap does not create a multiple edge or self-loop. Formally, the transition function is a
randomized algorithm given by Algorithm 2.

ALGORITHM 2: Markov Chain Transition Function, Input: a configuration C

Input: a configuration C
Output: a configuration C′

With probability 0.5, output configuration C. else
Select any endpoint e1 uniformly at random. It neighbors a vertex v1 in configuration C
Select any e2 u.a.r from e1’s degree neighborhood. It neighbors v2 (Optional: If the graph
obtained from the configuration with edges E ∪ {(e1, v2), (e2, v1)} \ {(e1, v1), (e2, v2)}
contains a multi-edge or self-loop, reject) E ← E ∪ {(e1, v2), (e2, v1)} \ {(e1, v1), (e2, v2)}.
Output C′ with this E

end

There are two chains described by Algorithm 2. The first, A doesn’t have step (4) and
its state space is all pseudographs with the desired joint degree matrix. The second, B
includes step (4) and only transitions to and from simple graphs with the correct joint
degree matrix.

We remind the reader of the standard result that any irreducible, aperiodic Markov
Chain with symmetric transitions converges to the uniform distribution over its state
space. Both A and B are aperiodic, due to the self-loop to each state. From the descrip-
tion of the transition function, we can see that A is symmetric. This is less clear for
the transition function of B. Is it possible for two connected configurations to have a
different number of feasible transitions in a given degree neighborhood? We show that
it is not the case in the following lemma.

LEMMA 5.1. The transition function of B is symmetric.

PROOF. Let C1 and C2 be two neighboring configurations in B. This means that they
differ by exactly 4 edges in exactly 1 degree neighborhood. Let this degree be k and let
these edges be e1v1 and e2v2 in C1 whereas they are e1v2 and e2v1 in C2. We want to
show that C1 and C2 have exactly the same number of feasible k-degree swaps.

Without loss of generality, let ex, ey be a swap that is prevented by e1 in C1 but
allowed in C2. This must mean that ex neighbors v1 and ey neighbors some vy 6= v1, v2.
Notice that the swap e1ex is currently feasible. However, in C2, it is now infeasible to
swap e1, ex, even though ex and ey are now possible.

If we consider the other cases, like ex, ey is prevented by both e1 and e2, then after
swapping e1 and e2, ex, ey is still infeasible. If swapping e1 and e2 makes something
feasible in C1 infeasible in C2, then we can use the above argument in reverse. This
means that the number of feasible swaps in a k-neighborhood is invariant under k-
degree swaps.

The remaining important question is the connectivity of the state space over these
chains. It is simple to show that the state space of A is connected. We note that it is a
standard result that all perfect matchings in a complete bipartite graph are connected
via edge swaps [Taylor 1982]. Moreover, the space of pseudographs can be seen exactly
as the set of all perfect matchings over the disconnected complete bipartite degree
neighborhoods in the joint degree matrix configuration model. The connectivity result
is much less obvious for B. We adapt a result of Taylor [Taylor 1982] that all graphs
with a given degree sequence are connected via edge swaps in order to prove this. The
proof is inductive and follows the structure of Taylor’s proof.
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THEOREM 5.2. Given two simple graphs, G1 and G2 of the same size with the same
joint degree matrix, there exists a series of endpoint rewirings to transform G1 into G2

(and vice versa) where every intermediate graph is also simple.

PROOF. This proof will proceed by induction on the number of nodes in the graph.
The base case is when there are 3 nodes. There are 3 realizable JDMs. Each is uniquely
realizable, so there are no switchings available.

Fig. 4. The three potential joint degree distributions when n = 3.

Assume that this is true for n = k. Let G1 and G2 have k + 1 vertices. Label the
nodes of G1 and G2 v1 · · · vk+1 such that deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vk+1). Our goal
will be to show that both graphs can be transformed in G′1 and G′2 respectively such
that v1 neighbors the same nodes in each graph, and the transitions are all through
simple graphs. Now we can remove v1 to create G′′1 and G′′2 , each with n− 1 nodes and
identical JDMs. By the inductive hypothesis, these can be transformed into one other
and the result follows.

We will break the analysis into two cases. For both cases, we will have a set of target
edges, e1, e2 · · · ed1 that we want v1 to be connected to. Without loss of generality, we
let this set be the edges that v1 currently neighbors in G2. We assume that the edges
are ordered in reverse lexicographic order by the degrees of their endpoints. This will
guarantee that the resulting construction for v1 is graphical and that we have a non-
increasing ordering on the requisite endpoints. Now, let ki denote the endpoint in G2

for edge ei that isn’t v1.
Case 1) For the first case, we will assume that v1 is already the endpoint of all edges
e1, e2 · · · ed1 but that all of the ki may not be assigned correctly as in Figure 6. Assume
that e1, e2 · · · ei−1 are all edges (v1, k1) · · · (v1, ki−1) and that ei is the first that isn’t
matched to its appropriate ki.

Call the current endpoint of the other endpoint of ei ui. We know that deg(ki) =
deg(ui) and that ki currently neighbors deg(ki) other nodes, Γ(ki). We have two cases
here. One is that v1 ∈ Γ(ki) but via edge f instead of ei. Here, we can swap v1 on the
endpoints of f and ei so that the edge v1 − ei − ki is in the graph. f can not be an
ej where j < i because those edges have their correct endpoints, kj assigned. This is
demonstrated in Figure 7.

The other case is that v1 6∈ Γ(ki). If this is the case, then there must exist some
x ∈ Γ(ki) \ Γ(ui) because d(ui) = d(ki) and ui neighbors v1 while ki doesn’t. Therefore,

v1

uf

f

vc

ei+1

ui+1

Fig. 5. The dotted edges represent the troublesome
edges that we may need to swap out before we can
swap v1 and vc.

e1 ed1

e3
e2

v1

ed1−1

ed1−2
k1

k2

k3

ud1

ud1−1

ud1−2

Fig. 6. The disk is v1. The crosses are the endpoints
correctly neighbored, e1 · · · ed1 .
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v1 x

v1

fei fei
or

v1 x

v1

fei fei
or

ui ki

ui
ki

ki

kiui

ui

Fig. 7. The two parts of Case (1).

v1 x

uf
ux

v1 x

ux

f ei f ei

or

v1 x

uf
ux

v1 x

ux

f ei f ei

or

Fig. 8. The two parts of Case (2)

we can swap the edges v1 − ei − ui and x− f − ki to v1 − ei − ki and x− f − ui without
creating any self-loops or multiple edges. This is demonstrated in Figure 7.

Therefore, we can swap all of the correct endpoints onto the correct edges.
Case 2) For the second case, we assume that the edges e1, · · · ed1 are distributed

over l nodes of degree d1. We want to show that we can move all of the edges e1 · · · ed1
so that v1 is an endpoint. If this is achievable, we have exactly Case 1.

Let e1, · · · ei−1 be currently matched to vi and let ei be matched to some x such that
deg(x) = d1. Let f be an edge currently matched to v1 that is not part of e1 · · · ed1 and
let its other endpoint be uf . Let the other end point of ei be ux as in Figure 8.

We now have several initial cases that are all easy to handle. First, if v, x, ux, uf are
all distinct and (v, ux) and (x, uf ) are not edges then we can easily swap v and x such
that the edges go from v − f − uf and x− ei − ux to v − ei − ux and x− f − uf . Next, if
uf = ux then we can simply swap v1 onto ei and x onto f and, again, v1 will neighbor
ei. This will not create any self-loops or multiple edges because the graph itself will be
isomorphic. This situations are both shown in Figure 8.

The next case is that x = uf . If we try to swap v1 onto ei then we create a self-loop
from x to x via f . Instead, we note that since the JDM is graphical, there must exist a
third vertex y of the same degree as v1 and x that does not neighbor x. Now, y neighbors
an edge g, and we can swap x− f and y− g to x− g and y− f . The edges are v1 − f − y
and x− ei − ui and ei can be swapped onto v1 without conflict.

The cases left to analyze are those where the nodes are all distinct and (v1, ux) or
(x, uf ) are edges in the graph. We will analyze these separately.

Case 2a) If (v1, ux) is an edge in the graph, then it must be so through some edge
named g. Note that this means we have v1 − g − ux and x − ei − ux. We can swap this
to v1− ei−ux and x− g−ux and have an isomorphic graph provided that g is not some
ej where j < i. This is the top case in Figure 9.

If g is some ej then it must be that ux = kj . This is distinct from ki. deg(kj) = deg(ki)
so there must exist some edge h that ki neighbors with its other endpoint being y. There
are again three cases, when y 6= x, v1 y = x and when y = v1. These are the bottom
three rows illustrated in Figure 9. The first is the simplest. Here, we can assume that
kj does not neighbor y (because it neighbors v1 and x that ki does not) so we can swap
kj onto h and ki onto e1. This has removed the offending edge, and we can now swap v1
onto e1 and x onto f .

When y = x, we first swap ki onto ej and kj onto h. Next, we swap v onto ei and x
onto f as they no longer share an offending edge.

Finally, when y = v1, we use a sequence of three swaps. The first is ki onto ej and kj
onto h. The next is v1 onto e1 and x onto h. Finally, we swap kj back onto ej and ki onto
ei.

Case 2b) If (x, uf ) is an edge in the graph, then it must be through some edge g
such that x − g − uf and x − ei − ux. Without loss of generality, assume that f is the
only edge neighboring v1 that isn’t an ej . Since f doesn’t neighbor v1 in G2, there must
either exist a w with deg(w) = deg(uf ) or vs with deg(vs) = d(v1). This relies critically
upon the fact that f and g are the same class edge. If there is a w, then it doesn’t
neighbor v1 (or we can apply the above argument to find a w′) and it must have some
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Fig. 9. A graphical representation of the situations discussed in Case (2a).
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Fig. 10. A graphical representation of the situations discussed in Case (2b)

neighbor y ∈ Γ(w) \ Γ(u) through edge h. Therefore, we can swap uf onto h and w onto
f . This removes the offending edge, and we can now swap v1 onto ei and x onto f .

If vs exists instead, then by the same argument, there exists some edge h with end-
point us such that vs /∈ Γ(uf ) and us /∈ Γ(x). Therefore, we can swap vs − h and x − g
to vs − g and x− h. This again removes the troublesome edge and allows us to swap v1
onto ei.

Therefore, given any node, a precise set of edges that it should neighbor, and a set
of vertices that are the endpoints of those edges, we can use half-edge-rewirings to
transform any graph G to G′ that has this property, provided the set of edges is graph-
ical.

Now that we have shown that both A and B converge to the uniform distribution
over their respective state spaces, the next question is how quickly this happens. Note
that from the proof that the state space of B is connected, we can upper bound the
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diameter of the state space by 3m. The diameter provides a lower bound on the mixing
time. In the next section, we will empirically estimate the mixing time to be also linear
in m.

6. ESTIMATING THE MIXING TIME OF THE MARKOV CHAIN
The Markov chain A is very similar to one analyzed by Kannan, Tetali and Vem-
pala [Kannan et al. 1999]. We can exactly use their canonical paths and analysis to
show that the mixing time is polynomial. This result follows directly from Theorem
3 of [Kannan et al. 1999] for chain A. This is because the joint degree matrix con-
figuration model can be viewed as |D| complete, bipartite, and disjoint components.
These components should remain disjoint, so the Markov Chain can be viewed as a
‘meta-chain’ which samples a component and then runs one step of the Kannan, Tetali
and Vempala chain on that component. Even though the mixing time for this chain is
provably polynomial, this upper bound is too large to be useful in practice.

The analysis to bound the mixing time for B chain is significantly more complicated.
One approach is to use the canonical path method to bound the congestion of this
chain. The standard trick is to define a path from G1 to G2 that fixes the misplaced
edges identified by G1 ⊕ G2 in a globally ordered way. However, this is difficult to
apply to chain B because fixing a specific edge may not be atomic, i.e. from the proof of
Theorem 5.2 it may take up to 4 swaps to correctly connect a vertex with an endpoint
if there are conflicts with the other degree neighborhoods. These swaps take place in
other degree neighborhoods and are not local moves. Therefore, this introduces new
errors that must be fixed, but can not be incorporated into G1 ⊕ G2. In addition, step
(4) also prevents us from using path coupling as a proof of the mixing time.

Given that bounding the mixing time of this chain seems to be difficult with-
out new techniques or ideas, we use a series of experiments that substitute the
autocorrelation time for the mixing time.

6.1. Autocorrelation Time
Autocorrelation time is a quantity that is related to the mixing time and is popular
among physicists. We will give a brief introduction to this concept, and refer the reader
to Sokal’s lecture notes for further details and discussion [Sokal 1996].

The autocorrelation of a signal is the cross-correlation of the signal with itself given
a lag t. More formally, given a series of data 〈Xi〉 where each Xi is a drawn from
the same distribution X with mean µ and variance σ, the autocorrelation function is
RX(t) = E[(Xi−µ)(Xi−t−µ)]

σ2 .
Intuitively, the inherent problem with using a Markov Chain sampling method is

that successive states generated by the chain may be highly correlated. If we were able
to draw independent samples from the stationary distribution, then the autocorrela-
tion of that set of samples with itself would go to 0 as the number of samples increased.
The autocorrelation time is capturing the size of the gaps between sampled states of
the chain needed before the autocorrelation of this ‘thinned’ chain is very small. If the
thinned chain has 0 autocorrelation, then it must be exactly sampled from the station-
ary distribution. In practice, when estimating the autocorrelation from a finite number
of samples, we do not expect it to go to exactly 0, but we do expect it to ‘die away’ as
the number of samples and gap increases.

Definition 6.1. The exponential autocorrelation time is τexp,X =
lim supt→∞

t
− log |RX(t)| [Sokal 1996].

Definition 6.2. The integrated autocorrelation time is τint,X = 1
2

∑∞
t=−∞RX(t) =

1
2 +

∑∞
t=1RX(t) [Sokal 1996].
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The difference between the exponential autocorrelation time and the integrated au-
tocorrelation time is that the exponential autocorrelation time measures the time it
takes for the chain to reach equilibrium after a cold start, or ‘burn-in’ time. The inte-
grated autocorrelation time is related to the increase in the variance over the samples
from the Markov Chain as opposed to samples that are truly independent. Often, these
measurements are the same, although this is not necessarily true.

We can substitute the autocorrelation time for the mixing time because they are,
in effect, measuring the same thing - the number of iterations that the Markov Chain
needs to run for before the difference between the current distribution and the station-
ary distribution is small. We will use the integrated autocorrelation time estimate.

6.2. Experimental Design
We used the Markov Chain B in two different ways. First, for each of the smaller
datasets, we ran the chain for 50,000 iterations 15 times. We used this to calculate
the the autocorrelation values for each edge for each lag between 100 and 15,000 in
multiples of 100. From this, we calculated the estimated integrated autocorrelation
time, as well as the iteration time for the autocorrelation of each edge to drop under a
threshold of 0.001. This is discussed in Section 6.4.

We also replicated the experimental design of Raftery and Lewis [Raftery and Lewis
1995]. Given our estimates of the autocorrelation time for each size graph in Sec-
tion 6.4, we ran the chain again for long enough to capture 10,000 samples where
each sample had x iterations of the chain between them. x was chosen to vary from
much smaller than the estimated autocorrelation time, to much larger. From these
samples, we calculated the sample mean for each edge, and compared it with the ac-
tual mean from the joint degree matrix. We looked at the total variational distance
between the sample means and actual means and showed that the difference appears
to be converging to 0. We chose the mean as an evaluation metric because we were able
to calculate the true means theoretically. We are unaware of another similarly simple
metric.

We used the formulas for empirical evaluation of mixing time from page 14 of Sokal’s
survey [Sokal 1996]. In particular, we used the following:

— The sample mean is µ = 1
n

∑n
i=1 xi.

— The sample unnormalized autocorrelation function is Ĉ(t) = 1
n−t

∑n−t
i=1 (xi−µ)(xi+t−

µ).
— The natural estimator of RX(t) is ρ̂(t) = Ĉ(t)/Ĉ(0)

— The estimator for τint,X is τ̂int = 1
2

∑n−1
t=−(n−1) λ(t)ρ̂(t) where λ is a ‘suitable’ cutoff

function.

Data Sets. We have used several publicly available datasets, Word Adjacen-
cies [Newman 2006b], Les Miserables [Knuth 1993], American College Football [Gir-
van and Newman 2002], the Karate Club [Zachary 1977], the Dolphin Social Net-
work [Lusseau et al. 2003], C. Elegans Neural Network (celegans) [Watts and Strogatz
1998a; White et al. 1986], Power grid (power) [Watts and Strogatz 1998b], Astrophysics
collaborations (astro-ph) [Newman 2001a], High-Energy Theory collaborations (hep-
th) [Newman 2001b], Coauthorships in network science (netscience) [Newman 2006c],
and a snapshot of the Internet from 2006 (as-22july) [Newman 2006d]. In the follow-
ing |V | is the number of nodes, |E| is the number of edges and |J | is the number of
non-zero entries in the joint degree matrix.
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Table I. Datasets

Dataset |E| |V | |J |
AdjNoun 425 112 159
as-22july 48,436 22,962 5,496
astro-ph 121,251 16,705 11,360
celegans 2,359 296 642
Dolphins 159 62 61
Football 616 115 18
hep-th 15,751 8,360 629
Karate 78 34 40
LesMis 254 77 99

netscience 2,742 1,588 184
power 6,594 4,940 108

Details about the datasets, |V | is the number
of nodes, |E| is the number of edges and |J | is
the number of unique entries in the J .
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Fig. 11. The time for an edge’s estimated autocorrelation function to pass under the threshold of 0.001
versus µe for that edge for LesMis and AdjNoun from L to R.

6.3. Relationship Between Mean of an Edge and Autocorrelation
For each of the smaller graphs, AdjNoun, Dolphins, Football, Karate and LesMis, we
ran the Markov Chain 10 times for 50,000 iterations and collected an indicator vari-
able for each potential edge. For each of these edges, and each run, we calculated the
autocorrelation function for values of t between 100 and 15,000 in multiples of 100. For
each edge, and each run, we looked at the t value where the autocorrelation function
first dropped below the threshold of 0.001. We then plotted the mean of these values
against the mean of the edge, i.e. if it connects vertices of degree di and dj (where
di 6= dj) then µe = Jdi,dj/didj or µe = Jdi,di/

(
di
2

)
otherwise. The three most useful plots

are given in Figures 11 and 12 as the other graphs did not contain a large range of
mean values.

From these results, we identified a potential relationship between µe and the time
to pass under a threshold. Unfortunately, none of our datasets contained a significant
number of edges with larger µe values, i.e. between 0.5 and 1. In order to test this
hypothesis, we designed a synthetic dataset that contained the many edges with values
of µe at i

20 for i = 1, · · · 20. We describe the creation of this dataset in the appendix.
The final dataset we created had 326 edges, 194 vertices and 21 distinct J entries.

We ran the Markov Chain 200 times for this synthetic graph. For each run, we calcu-
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lated the threshold value for each edge. Figure 12 shows the edges’ mean vs its mean
time for the autocorrelation value to pass under 0.001. We see that there is a roughly
symmetric curve that obtains its maximum at µe = 0.5.
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Fig. 12. The time for an edge’s estimated autocorrelation function to pass under the threshold of 0.001
versus µe for that edge for Karate and the synthetic dataset. The synthetic dataset has a larger range of µe
values than the real datasets and a significant number of edges for each value.

This result suggests a way to estimate the autocorrelation time for larger graphs
without repeating the entire experiment for every edge that could possibly appear.
One can calculate µe for each edge from the JDM and sample edges with µe around
0.5. We use this method for selecting our subset of edges to analyze. In particular, we
sampled about 300 edges from each of the larger graphs. For all of these except for
power, the µe values were between 0.4 and 0.6. For power, the maximum µe value is
about 0.15, so we selected edges with the largest µ values.

6.4. Autocorrelation Values
For each dataset and each run we calculated the unnormalized autocorrelation values.
For the smaller graphs, this entailed setting t to every value between 100 and 15,000
in multiples of 100. We randomly selected 1 run for each dataset and graphed the
autocorrelation values for each of the edges. We present the data for the Karate and
Dolphins datasets in Figures 13 and 14. For the larger graphs, we changed the starting
and ending points, based on the graph size. For example, for Netscience was analyzed
from 2,000 to 15,000 in multiples of 100, while as-22july was analyzed from 1,000 to
500,000 in multiples of 1,000.

All of the graphs exhibit the same behavior. We see an exponential drop off initially,
and then the autocorrelation values oscillate around 0. This behavior is due to the
limited number of samples, and a bias due to using the sample mean for each edge.
If we ignore the noisy tail, then we estimate that the autocorrelation ‘dies off ’ at the
point where the mean absolute value of the autocorrelation approximately converges,
then we can locate the ‘elbow’ in the graphs. This estimate for all graphs is given in
Table III at the end of this Section.

6.5. Estimated Integrated Autocorrelation Time
For each dataset and run, we calculated the estimated integrated autocorrelation time.
For the datasets with fewer than 1,000 edges, we calculated the autocorrelation in lags
of 100 from 100 to 15,000 for each dataset. For the larger ones, we used intervals that
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Fig. 13. The exponential drop-off for Karate ap-
pears to end after 400 iterations.
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Fig. 14. The exponential drop-off for Dolphins
appears to end after 600 iterations.

Table II. A summary of the Estimate Integrated Autocorrelation Times

Dataset |E| mean max min median max min maximum max min
Karate 78 288.92 444.1 221.13 288.31 443 217.63 382.59 608.06 268.95

Dolphins 159 383.21 553.84 256.13 377.4 550.99 211.44 528.86 1134.1 397.35
LesMis 254 559.77 931.35 129.45 542.43 895.57 57.492 894.08 2598.6 342.76

AdjNoun 425 688.71 1154.9 156.49 659.06 1160.3 66.851 1186.1 4083.6 350.97
Football 616 962.42 2016.9 404.77 925.97 1646.9 349.12 1546.4 7514.3 967
celegans 2359 3340.2 4851.4 2458.8 3235.7 4861.4 2323.6 4844.6 7836.9 3065.5

netscience 2742 1791.4 3147.2 1087.7 1658.3 3033.2 937.8382 3401 7404 1894.7
power 6594 6624.5 17933 2166.9 4768.8 16901 250.6012 20599 54814 7074.7
hep-th 15751 26552 36816 14976 25608 37004 14130 46309 64936 25753

as-22july 48436 89637 139280 60627 87190 152490 58493 121930 256520 76214
astro-ph 121251 121860 298970 37706 119900 321730 46830 152930 408000 84498

Mean refers to taking the mean autocorrelation time for each edge, and then the mean, min and max of these values over all
measured edges. Similarly, median is the median value for each edge, while max is the maximum for each edge.

depended on the total size of the graph. We estimate ρ̂(t) as the size of the intervals
times the sum of the values. The cut-off function we used for the smaller graphs was
λ(t) = 1 if 0 < t < 15, 000 and 0 otherwise. This value was calculated for each edge. In
Table II we present the mean, maximum and minimum estimated integrated autocor-
relation time for each dataset over the runs of the Markov Chain using three different
methods. For each of the edges, we first calculated the mean, median and max esti-
mated integrated autocorrelation value over the various runs. Then, for each of these
three values for each edge, we calculated the max, mean and min over all edges. For
each of the graphs, the data series representing the median and max have each had
their x-values perturbed slightly for clarity.

These values are graphed on a log-log scale plot. Further, we also present a graph
showing the ratio of these values to the number of edges. The ratio plot, Figure 16,
suggests that the autocorrelation time may be a linear function of the number of edges
in the graph, however the estimates are noisy due to the limited number of runs.

All three metrics give roughly the same picture. We note that there is much higher
variance in estimated autocorrelation time for the larger graphs. If we consider the
evidence of the log-log plot and the ratio plot, we suspect that the autocorrelation time
of this Markov Chain is linear in the number of edges.

6.6. The Sample Mean Approaches the Real Mean for Each Edge
Given the results of the previous experiment estimating the integrated autocorrelation
time, we next executed an experiment suggested by Raftery and Lewis [Raftery and

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 17 of 24 Journal of Experimental Algorithmics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

A:18 I. Stanton et al.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1.5  2  2.5  3  3.5  4  4.5  5  5.5

Lo
g(

E
st

. I
nt

. A
ut

oc
or

re
la

tio
n 

T
im

e)

Log(Number of Edges)

Log-Log Plot of Estimated Integrated Autocorrelation Time

Mean
Median

Max

Fig. 15. The max, median and min values over the edges for the est. int. autocorrelation times in a log-
log plot. L to R in order of size: Karate, Dolphins, LesMis, AdjNoun, Football, celegans, netscience, power,
hep-th, as-22july and astro-ph

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12  14

R
at

io

Number Identifying Dataset

Ratio of Estimated Integrated Autocorrelation Time to Number of Edges

Mean
Median

Max

Fig. 16. The ratio of the max, median and min values over the edges to the number of edges for the esti-
mated integrated autocorrelation times. L to R in order of size: Karate, Dolphins, LesMis, AdjNoun, Football,
celegans, netscience, power, hep-th, as-22july and astro-ph

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 18 of 24Journal of Experimental Algorithmics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Constructing and Sampling Graphs with a Prescribed Joint Degree Distribution A:19

 0

 1

 2

 3

 4

 5

 6

 7

 50  100  150  200  250  300  350  400  450  500

T
ot

al
 V

ar
ia

tio
na

l D
is

ta
nc

e/
|E

|

Number of Iterations Between Samples

Percent Error of Total Variational Distance, Dolphins

40000 samples
20000 samples
10000 samples

5000 samples

Fig. 17. The Dolphin Dataset with 5,000 to 40,000
samples
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Fig. 18. The Karate Dataset with 5,000 to 40,000
samples

Lewis 1995]. First we note that for each edge e, we know the true value of P (e ∈
G|G has J ) is exactly Jk,l

DkDl
or Jk,k

(Dk
2 )

if e is an edge between degrees k and l. This is

because there are DkDl potential (k, l) edges that show up in any graph with a fixed
J , and each graph has Jk,l of them. If we consider the graphs as being labeled, then
we can see that each edge has an equal probability of showing up when we consider
permutations of the orderings.

Thus, our experiment was to take samples at varying intervals, and consider how the
sample mean of each edge compared with our known theoretical mean. For the smaller
graphs, we took 10,000 samples at varying gaps depending on our estimated integrated
autocorrelation time and repeated this 10 times. Additionally, we saw that the total
variational distance quickly converged to a small, but non-zero value. We repeated
this experiment with 20,000 samples and, for the two smallest graphs, Karate and
Dolphins, we repeated the experiment with 5,000 and 40,000 samples. These results
show that this error is due to the number of samples and not the sampler. For the
graphs with more than 1,000 edges, each run resulted in 20,000 samples at varying
gaps, and this was repeated 5 times. We present these results in Figures 18 through
28. If Se,g is the sample mean for edge e and gap g, and µe is the true mean, then the
graphed value is

∑
e |Se,g − µe|/

∑
e µe.

In all of the figures, the line runs through the median error for the runs and the
error bars are the maximum and minimum values. We note that the maximum and
minimum are very close to the median as they are within 0.05% for most intervals.
These graphs imply that we are sampling uniformly after a gap of 175 for the Karate
graph. For the dolphin graph, we see very similar results, and note that the error
becomes constant after a sampling gap of 400 iterations.

For the larger graphs, we varied the gaps based on the graph size, and then focused
on the area where the error appeared to be decreasing. Again, we see consistent re-
sults, although the residual error is higher. This is to be expected because there are
more potential edges in these graphs, so we took relatively fewer samples per edge. A
summary of the results can be found in Table III.

6.7. Summary of Experiments
Based on the results in this table, our recommendation would be that running the
Markov Chain for 5m steps would satisfy all running time estimates except for Power’s
results for the Maximum Estimated Integrated Autocorrelation time. This estimate is
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Fig. 19. The AdjNoun Dataset with 10,000 and
20,000 samples
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Fig. 20. The AS-22July06 Dataset with 20,000
samples
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Fig. 21. The Astro-PH Dataset with 20,000 sam-
ples
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Fig. 22. The Celegans Dataset with 20,000 sam-
ples
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Fig. 23. The Football Dataset with 10,000 and
20,000 samples
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Fig. 24. The Hep-TH Dataset with 20,000 samples
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Fig. 25. The LesMis Dataset with 10,000 and
20,000 samples
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Fig. 26. The Netscience Dataset with 20,000 sam-
ples
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Table III. Summary of Estimates

|E| Max EI Mean Conv. Thresh.
AdjNoun 425 1186 900 700

AS-22July 48,436 256,520 95,000 156,744
Astro-PH 121,251 408,000 120,000 343,154
Celegans 2,359 7836.9 3,750 7,691
Dolphins 159 528 400 600
Football 616 1546 1000 900
Hep-TH 15,751 64,936 28,000 22,397
Karate 78 382 175 400
LesMis 254 894 800 1000

Netscience 2,742 7,404 2,000 7,017
Power 6,594 54,814 8,000 7,270

The values are the Maximum Estimated Integrated Autocorre-
lation time (Max EI, the third column of Table 2), the Sample
Mean Convergence iteration number, and the time to drop un-
der the Autocorrelation Threshold. The Autocorrelation thresh-
old was calculated as when the average absolute value of the
autocorrelation was less than 0.0001
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significantly lower than the result for Chain A that was obtained using the standard
theoretical technique of canonical paths.

7. CONCLUSIONS AND FUTURE WORK
This paper makes two primary contributions. The first is the investigation of Markov
Chain methods for uniformly sampling graphs with a fixed joint degree distribution.
Previous work shows that the mixing time of A is polynomial, while our experiments
suggest that the mixing time of B is also polynomial. The relationship between the
mean of an edge and the autocorrelation values can be used to efficiently experiment
with larger graphs by sampling edges with mean between 0.4 and 0.6 and repeating
the analysis for just those edges. This was used to repeat the experiments for larger
graphs and to provide further convincing evidence of polynomial mixing time.

Our second contribution is in the design of the experiments to evaluate the mixing
time of the Markov Chain. In practice, it seems the stopping time for sampling is
often chosen without justification. Autocorrelation is a simple metric to use, and can be
strong evidence that a chain is close to the stationary distribution when used correctly.

APPENDIX
Designing Synthetic Data. Our goal was to represent all of the potential means for i

20
for 0 < i ≤ 20. We note that 20 factors into 4 and 5, so we want to first fix some degrees
such that Dk = 4 and Dl = 5. For convenience, because the maximum number of edges
we will be assigning is 20, we will pick these degrees to be K = {20, 21, 22, 23, 24} for
Dk = 4 and L = {25, 26, 27, 28} for Dl = 5. The number of each we picked was to
guarantee that there were at least 20 combinations of edge types. We can now assign
the values 1−20 arbitrarily to JK×L. This assignment clearly satisfies that Jk,l ≤ DkDl
so far.

Now, we must fill in the rest of J so that D is integer valued for degrees. One way is
to note that we should have 4×20 degree 20 edges. We can sum the number of currently
allocated edges with one endpoint of degree 20, call this x and set J1,20 = 80−x. There
are many other ways of consistently completing J , such as assigning as many edges
as possible to the K ×K and L× L entries, like J20,21. This results in a denser graph.
For the synthetic graph used in this paper, we completed J by adding all edges as
(1, 20), (1, 21) etc edges. We chose this because it was simple to verify and it also made
it easy to ignore the edges that were not of interest.
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